25 research outputs found

    QTLMAS 2009: simulated dataset

    Get PDF
    Background - The simulation of the data for the QTLMAS 2009 Workshop is described. Objective was to simulate observations from a growth curve which was influenced by a number of QTL. Results - The data consisted of markers, phenotypes and pedigree. Genotypes of 453 markers, distributed over 5 chromosomes of 1 Morgan each, were simulated for 2,025 individuals. From those, 25 individuals were parents of the other 2,000 individuals. The 25 parents were genetically related. Phenotypes were simulated according to a logistic growth curve and were made available for 1,000 of the 2,000 offspring individuals. The logistic growth curve was specified by three parameters. Each parameter was influenced by six Quantitative Trait Loci (QTL), positioned at the five chromosomes. For each parameter, one QTL had a large effect and five QTL had small effects. Variance of large QTL was five times the variance of small QTL. Simulated data was made available at http://www.qtlmas2009.wur.nl/UK/Dataset

    Biochemical pathways analysis of microarray results: regulation of myogenesis in pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combining microarray results and biological pathway information will add insight into biological processes. Pathway information is widely available in databases through the internet.</p> <p>Mammalian muscle formation has been previously studied using microarray technology in pigs because these animals are an interesting animal model for muscle formation due to selection for increased muscle mass. Results indicated regulation of the expression of genes involved in proliferation and differentiation of myoblasts, and energy metabolism. The aim of the present study was to analyse microarrays studying myogenesis in pigs. It was necessary to develop methods to search biochemical pathways databases.</p> <p>Results</p> <p>PERL scripts were developed that used the names of the genes on the microarray to search databases. Synonyms of gene names were added to the list by searching the Gene Ontology database. The KEGG database was searched for pathway information using this updated gene list. The KEGG database returned 88 pathways. Most genes were found in a single pathway, but others were found in up to seven pathways. Combining the pathways and the microarray information 21 pathways showed sufficient information content for further analysis. These pathways were related to regulation of several steps in myogenesis and energy metabolism. Pathways regulating myoblast proliferation and muscle fibre formation were described. Furthermore, two networks of pathways describing the formation of the myoblast cytoskeleton and regulation of the energy metabolism during myogenesis were presented.</p> <p>Conclusion</p> <p>Combining microarray results and pathways information available through the internet provide biological insight in how the process of porcine myogenesis is regulated.</p

    Comparison of analyses of the QTLMAS XIII common dataset. I: genomic selection

    Get PDF
    Background - Genomic selection, the use of markers across the whole genome, receives increasing amounts of attention and is having more and more impact on breeding programs. Development of statistical and computational methods to estimate breeding values based on markers is a very active area of research. A simulated dataset was analyzed by participants of the QTLMAS XIII workshop, allowing a comparison of the ability of different methods to estimate genomic breeding values. Methods - A best case scenario was analyzed by the organizers where QTL genotypes were known. Participants submitted estimated breeding values for 1000 unphenotyped individuals together with a description of the applied method(s). The submitted breeding values were evaluated for correlation with the simulated values (accuracy), rank correlation of the best 10% of individuals and error in predictions. Bias was tested by regression of simulated on estimated breeding values. Results - The accuracy obtained from the best case scenario was 0.94. Six research groups submitted 19 sets of estimated breeding values. Methods that assumed the same variance for markers showed accuracies, measured as correlations between estimated and simulated values, ranging from 0.75 to 0.89 and rank correlations between 0.58 and 0.70. Methods that allowed different marker variances showed accuracies ranging from 0.86 to 0.94 and rank correlations between 0.69 and 0.82. Methods assuming equal marker variances were generally more biased and showed larger prediction errors. Conclusions - The best performing methods achieved very high accuracies, close to accuracies achieved in a best case scenario where QTL genotypes were known without error. Methods that allowed different marker variances generally outperformed methods that assumed equal marker variances. Genomic selection methods performed well compared to traditional, pedigree only, methods; all methods showed higher accuracies than those obtained for breeding values estimated solely on pedigree relationship

    Partial least square regression applied to the QTLMAS 2010 dataset

    Get PDF
    Detection of genomic regions affecting traits is a goal in many genetic studies. Studies applying distinct methods for detection of these regions, called quantitative trait loci (QTL), have been described, ranging from single marker regression [1] to methods that enable to fit several markers simultaneously [2,3]. Simultaneously fitting all markers leads to more accurate detection of QTL compared to independent fitting of single markers in a regression model when there is linkage disequilibrium (LD) between the genomic regions that affect the trait but comes at the cost of increased computational requirements [2]. Partial least square regression (PLSR) is one method for simultaneously fitting multiple markers and was applied by Bjornstad et al. for detection of QTL [3]. An interesting characteristic of PLSR its straightforward application of to simultaneous analysis of data of multiple traits [3]. The objectives of this study were to use PLSR to search for QTL and to estimate breeding values in the dataset of the QTLMAS 2010 worksho

    Haplotype inference in crossbred populations without pedigree information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current methods for haplotype inference without pedigree information assume random mating populations. In animal and plant breeding, however, mating is often not random. A particular form of nonrandom mating occurs when parental individuals of opposite sex originate from distinct populations. In animal breeding this is called <it>crossbreeding </it>and <it>hybridization </it>in plant breeding. In these situations, association between marker and putative gene alleles might differ between the founding populations and origin of alleles should be accounted for in studies which estimate breeding values with marker data. The sequence of alleles from one parent constitutes one haplotype of an individual. Haplotypes thus reveal allele origin in data of crossbred individuals.</p> <p>Results</p> <p>We introduce a new method for haplotype inference without pedigree that allows nonrandom mating and that can use genotype data of the parental populations and of a crossbred population. The aim of the method is to estimate line origin of alleles. The method has a Bayesian set up with a Dirichlet Process as prior for the haplotypes in the two parental populations. The basic idea is that only a subset of the complete set of possible haplotypes is present in the population.</p> <p>Conclusion</p> <p>Line origin of approximately 95% of the alleles at heterozygous sites was assessed correctly in both simulated and real data. Comparing accuracy of haplotype frequencies inferred with the new algorithm to the accuracy of haplotype frequencies inferred with PHASE, an existing algorithm for haplotype inference, showed that the DP algorithm outperformed PHASE in situations of crossbreeding and that PHASE performed better in situations of random mating.</p

    Sensitivity of methods for estimating breeding values using genetic markers to the number of QTL and distribution of QTL variance

    Get PDF
    The objective of this simulation study was to compare the effect of the number of QTL and distribution of QTL variance on the accuracy of breeding values estimated with genomewide markers (MEBV). Three distinct methods were used to calculate MEBV: a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased when the number of simulated QTL increased. The accuracy decreased more when QTL had different variance values than when all QTL had an equal variance. The accuracy of MEBV calculated with PLSR was affected neither by the number of QTL nor by the distribution of QTL variance. Additional simulations and analyses showed that these conclusions were not affected by the number of individuals in the training population, by the number of markers and by the heritability of the trait. Results of this study show that the effect of the number of QTL and distribution of QTL variance on the accuracy of MEBV depends on the method that is used to calculate MEBV

    Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chicken (<it>Gallus gallus</it>), like most avian species, has a very distinct karyotype consisting of many micro- and a few macrochromosomes. While it is known that recombination frequencies are much higher for micro- as compared to macrochromosomes, there is limited information on differences in linkage disequilibrium (LD) and haplotype diversity between these two classes of chromosomes. In this study, LD and haplotype diversity were systematically characterized in 371 birds from eight chicken populations (commercial lines, fancy breeds, and red jungle fowl) across macro- and microchromosomes. To this end we sampled four regions of ~1 cM each on macrochromosomes (GGA1 and GGA2), and four 1.5 -2 cM regions on microchromosomes (GGA26 and GGA27) at a high density of 1 SNP every 2 kb (total of 889 SNPs).</p> <p>Results</p> <p>At a similar physical distance, LD, haplotype homozygosity, haploblock structure, and haplotype sharing were all lower for the micro- as compared to the macrochromosomes. These differences were consistent across populations. Heterozygosity, genetic differentiation, and derived allele frequencies were also higher for the microchromosomes. Differences in LD, haplotype variation, and haplotype sharing between populations were largely in line with known demographic history of the commercial chicken. Despite very low levels of LD, as measured by r<sup>2 </sup>for most populations, some haploblock structure was observed, particularly in the macrochromosomes, but the haploblock sizes were typically less than 10 kb.</p> <p>Conclusion</p> <p>Differences in LD between micro- and macrochromosomes were almost completely explained by differences in recombination rate. Differences in haplotype diversity and haplotype sharing between micro- and macrochromosomes were explained by differences in recombination rate and genotype variation. Haploblock structure was consistent with demography of the chicken populations, and differences in recombination rates between micro- and macrochromosomes. The limited haploblock structure and LD suggests that future whole-genome marker assays will need 100+K SNPs to exploit haplotype information. Interpretation and transferability of genetic parameters will need to take into account the size of chromosomes in chicken, and, since most birds have microchromosomes, in other avian species as well.</p

    The Imprinted Gene DIO3 Is a Candidate Gene for Litter Size in Pigs

    Get PDF
    Genomic imprinting is an important epigenetic phenomenon, which on the phenotypic level can be detected by the difference between the two heterozygote classes of a gene. Imprinted genes are important in both the development of the placenta and the embryo, and we hypothesized that imprinted genes might be involved in female fertility traits. We therefore performed an association study for imprinted genes related to female fertility traits in two commercial pig populations. For this purpose, 309 SNPs in fifteen evolutionary conserved imprinted regions were genotyped on 689 and 1050 pigs from the two pig populations. A single SNP association study was used to detect additive, dominant and imprinting effects related to four reproduction traits; total number of piglets born, the number of piglets born alive, the total weight of the piglets born and the total weight of the piglets born alive. Several SNPs showed significant () additive and dominant effects and one SNP showed a significant imprinting effect. The SNP with a significant imprinting effect is closely linked to DIO3, a gene involved in thyroid metabolism. The imprinting effect of this SNP explained approximately 1.6% of the phenotypic variance, which corresponded to approximately 15.5% of the additive genetic variance. In the other population, the imprinting effect of this QTL was not significant (), but had a similar effect as in the first population. The results of this study indicate a possible association between the imprinted gene DIO3 and female fertility traits in pigs
    corecore